The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to
$(\sim x \wedge y) \vee(\sim x \wedge \sim y)$
$(x \wedge \sim y) \vee(\sim x \wedge y)$
$(x \wedge y) \vee(\sim x \wedge \sim y)$
$(x \wedge y) \wedge(\sim x \vee \sim y)$
The negation of $(p \wedge(\sim q)) \vee(\sim p)$ is equivalent to
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is
The statement $p \to ( q \to p)$ is equivalent to
Consider the following statements :
$A$ : Rishi is a judge.
$B$ : Rishi is honest.
$C$ : Rishi is not arrogant.
The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is