The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to 

  • [JEE MAIN 2020]
  • A

    $(\sim x \wedge y) \vee(\sim x \wedge \sim y)$

  • B

    $(x \wedge \sim y) \vee(\sim x \wedge y)$

  • C

    $(x \wedge y) \vee(\sim x \wedge \sim y)$

  • D

    $(x \wedge y) \wedge(\sim x \vee \sim y)$

Similar Questions

The negation of $(p \wedge(\sim q)) \vee(\sim p)$ is equivalent to 

  • [JEE MAIN 2023]

$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.

  • [JEE MAIN 2022]

If $p, q, r$ are simple propositions with truth values $T, F, T$, then the truth value of $(\sim p \vee q)\; \wedge \sim r \Rightarrow p$ is

The statement $p \to ( q \to p)$ is equivalent to

  • [JEE MAIN 2013]

Consider the following statements :

$A$ : Rishi is a judge.

$B$ : Rishi is honest.

$C$ : Rishi is not arrogant.

The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is

  • [JEE MAIN 2022]